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Abstract. The scattering of heavy ion with a multilevel Rydberg atom in the presence of an electromagnetic
field is studied. The interaction of Rydberg atom and the e.m field is explored using non-perturbative quasi-
energy technique. Although the results are presented for selected excitations but in actual calculations we
have included many levels of the atom. The effect of various parameters are shown on collisional excitation
process. As an illustration detailed calculations are performed for the inelastic proton-Na Rydberg atom
collision accompanied by the transfer of photons and the effects of dressing due to the field are considered.
The emphasis of the present work is on collision induced transitions especially the case that involves change
of orbital as well as principal quantum number.

PACS. 34.60.+z Scattering in highly excited states (e.g., Rydberg states)

1 Introduction

In the last few years, there has been a revival of interest
in highly excited states due to the introduction of tun-
able lasers allowing for a selective preparation of Rydberg
states [1–4]. Such a study has attracted considerable at-
tention due to the unusual spectroscopic properties of
Rydberg atoms. Due to its large size and dipole moment
a Rydberg atom is one of the few systems that may be
exposed to well controlled external fields. The classical
prototypes for Rydberg states are alkali-metal atoms.

From the stand point of studying the basic physics of
collision process we are particularly interested in approxi-
mate models which not only conserve the basic qualitative
features, but also allow us to make substantial progress to-
wards an analytic solution of the problem. With advances
in experimental research on Rydberg atoms, excited states
with very large quantum numbers (n ' 600) have been
reported [5–7]. For such states the cross-sections for scat-
tering of charged particles are extremely large. In order
to describe transitions between such states, it is neces-
sary to take an approach by which it is possible to find
cross-sections for any arbitrary n. In the present paper we
have developed a comprehensive formulation of collisional
treatments suitable for Rydberg atom collisions with ions,
based on the quasi-energy analysis of the time-dependent
Schrödinger equation in the impact parameter approach.

The present study is devoted to collisionally aided ra-
diative excitation of Na-Rydberg atom due to heavy ion
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impact. This study is quite useful in the analysis of ion-
atom collisions, for a quantitative modelling of low and
high temperature plasmas [8–10]. These processes provide
information on the interaction between colliding particles,
on the trend of gas phase chemical reactions [11] and on
ways to develop new types of lasers [12]. The study of
collision induced population transfer has been reported
earlier in a number of contexts. Seaton [13] calculated
electron and proton impact excitation of 3s-3p transi-
tion in sodium for application to astrophysical processes.
Bloomefield et al. [14,15] have observed resonant mi-
crowave multiphoton transitions between Rydberg states
of potassium. Experimental results are also available on
the total cross-sections for transitions from nd levels of
the sodium atom [16]. It has been recognised that many
properties of plasma are determined by the presence of
atoms or ions in the excited states and lifetimes of these
states are determined in part by collision with particles of
the medium.

A knowledge of excitation cross-section is also impor-
tant in many applications such as energy loss of heavy ions
in solid targets, radiation damage in biological matters,
plasma heating e.m waves etc. The relatively small electric
fields present in such situations distort the highly excited
Rydberg states. It is therefore of great interest to study the
effect of small electric field on the collisional excitation of
Na-Rydberg atom. The excitation of alkali Rydberg states
from their ns ground states has been a popular subject,
but the experimental study of alkali atom valence electron
excitation has been scarce. In case of sodium we find im-
pacts limited to H+, H+

2 , H+
3 , He+, Ne+. Theoretical treat-

ment of the p+Na(3s) −→ p+Na(3p) processes has been
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limited to Born approximation [17], close coupling [18],
Vainshtein-Presnyakov-Sobelman [19] and also reported
by Cavagnero [20]. Experiments involving H+, H+

2 , He+

and Ne+ projectiles incident on the Na(30s) and Na(29d)
have been reported by Rolfes et al. [21] with energies up
to 4 351 eV.

In the present work we have used the non-perturbative
method developed by Agre and Rapport [22] to study the
microwave field-sodium atom interactions and the effect
of various collision and field parameters on the ion atom
system undergoing collisions. We have studied here the
collision of an incoming proton with a sodium atom ini-
tially in the state “i” (in the presence of single mode laser
beam) moving to excited states “j”. The dynamics of the
Rydberg electron driven by such a time-dependent field is
complex, owing to the large number of energetically ac-
cessible states that are coupled by the field during the
encounter and also due to the influence of two Coulombic
potentials (projectile and the Rydberg core). The accurate
computation of the energetically high lying Rydberg states
requires a careful choice of the Rydberg wave functions,
as they differ from their hydrogenic counterparts in their
large spatial domains. The wavefunctions for the present
problem have been computed with the help of radial wave
functions of Picart et al. [23]. Excitations have been con-
sidered for a set of degenerate as well as non-degenerate
states. In particular it turns out that the cross-sections
in the energy range of interest here can be described ad-
equately by considering a total of sixteen levels, amongst
which the levels coupled with the microwave field form a
type of ladder transitions because of the nearly same spac-
ing amongst them. We have restricted ourselves to n lying
between 40 to 43, however the generalization to other val-
ues of n can be done in a similar way. Because of the finite
range of radiative coupling, we have used the concepts of
single channel quantum defect theory (QDT) which as-
sumes the constant values of quantum defects for s, p,
d and f states. In the light of above discussion we have
in the present paper calculated TDCS’s (total differential
cross-sections) for Na-Rydberg atom with proton impact
in the presence of microwave field. The present calculated
results can be used for further experimental work.

The paper is organized as follows: in Section 2, we
present a theoretical treatment of the inelastic scattering
of protons by Rydberg atoms in the presence of microwave
field and obtain results concerning the importance of the
dressing of atomic states in the scattering process. Sec-
tion 3 contains a discussion of our analytical results in the
frame work of time dependent non-perturbative approach.
Finally, Section 4 is devoted to concluding remarks about
the process.

2 Theory

In this section we study the interaction between a
Na-Rydberg atom and a collision partner in the pres-
ence of the microwave field. We assume that a specific
Rydberg state of sodium has been prepared by some ex-
perimental arrangement. We consider a Rydberg state

of 40s Na atom. The most important part of the inter-
action is a potential “V ” between the collision partner
and the valence electron of the Rydberg atom. The va-
lence electron of the Rydberg atom may be described by
the wavefunction ψnlm where n, l, m define the principal,
orbital and magnetic quantum numbers respectively.

The geometry of the problem is as follows: the target
Rydberg atom is assumed to be stationary at the origin
and the collisional partner, here proton, passes the target
atom with an impact parameter “b” at x = 0 and is mov-
ing in the positive x-direction with a constant velocity v.
We assume that the projectile travels in a straight line and
in addition there is an e.m field in the z-direction. This
straight line trajectory provides a valid representation of
the inelastic cross-sections.

We have assumed the dipole approximation to be valid
here and have ignored small effects due to the recoil of the
target and the projectile, as well as exchange effects and
fine and hyperfine structures and all other interactions
with the core. In accordance with Irby et al. [21] we isolate
few levels from n = 40 to n = 43 states of Na atom from
the entire set of energy levels. The e.m field is treated
classically and is assumed to be purely monochromatic
with angular frequency ω and linear polarization vector ε̂.
It is represented by:

E(t) = ε̂E0 cos(ωt) (1)

where E0 is the amplitude of the e.m field. Using the
atomic units we can write the time-dependent Schrödinger
equation for the above ion-atom system in the presence of
e.m field as:

ι
∂ψ

∂t
(r, t) =

[
H0(r) + V L

int(E, ω, t) + Vint

]
ψ(r, t) (2)

where H0 is the Hamiltonian of the atom in the absence
of field and is given by:

H0(r) = Tkin + V0. (3)

The given operator H0 determines the structure of the
atom. The energy operator H0 satisfies the equation:

H0(r)uq(r) = E0
quq(r) (4)

where uq(r) are the unperturbed eigenfunctions corre-
sponding to energies E0

q . The operator of the energy of
the interaction of atom with the e.m field is given by:

V L
int(E, ω, t) = −d ·E (5)

where d is the dipole moment operator and Vint describes
the interaction potential between the projectile ion and
the Rydberg atom. The interaction potential has been
truncated to its dominant dipole term. The collisional ex-
citation of Rydberg atoms has been extensively studied
by others using this type of potential (e.g. in case of with-
out field calculation Irby et al.). As far as charge dipole
interaction is concerned, this potential reproduces the re-
sults of normalized Born approximations for fast collisions
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and describes reasonably the slow collisions between lev-
els with small quantum defects [5]. At far away distances
(impact parameters) Vint−→ 0, equation (2) reduces to
the Schrödinger equation of isolated atom in the presence
of e.m field i.e.

ι
∂φ

∂t
(r, t) = HA(r, t)φ(r, t) (6)

where

HA(r, t) = H0(r) + V L
int(E, ω, t) (7)

is the atomic Hamiltonian in the presence of e.m field. At
low and intermediate values of the impact parameter there
is an energy transfer to the Rydberg electron leading to
a shake up process. The energy transfer is accounted by
the differences in the proton plus the photon energies and
the ionic core transition interval. There is however another
aspect of present process that unlike the electron impact
collisions, there is no exchange interaction between target
and projectile to complicate the picture and the projectile
transfers a small fraction of its momentum and energy
during the collision.

In terms of quasi-energy formalism we express the
quantum levels of the atom in terms of the dressed states.
The dressed states provide a useful representation of the
collision dynamics over a wide range of impact parameters
and ion velocities and can be used conveniently with the
Rydberg atoms because of their large polarizability. We
expand the total wavefunction of the system in terms of
the dressed states and bare states as:

ψ(r, t) =
∑
n

Cnφn +
∑
m

Cmχme−ιEmt (8)

where the subscript n runs over all the dressed states
and m over all the bare states. The laser field couples
only the angular momentum channels with ∆l = ±1, so
we have presently considered the s −→ p transitions for
n ranging from 40 to 43 to be laser coupled due to the
nearly same energy level spacing between them and their
being dipole allowed. Substituting equation (8) into equa-
tion (2) and using the orthogonality condition we obtain
a set of coupled first order differential equations

ι
∑
n

dCn
dt

=
∑
n

Cn(t)〈φj |V |φn〉

+
∑
m

Cm(t)〈φj |V |χm〉e−ιEmt. (9)

The interaction potential between the incident proton and
the atom is of the form

V = −Z
R

+
Z∑
j=1

1
r0j

(10)

where Z is the effective charge of the Rydberg atom, R
is the position coordinate of the incident proton and rj is

the position vector of the jth atomic electron with respect
to the atomic nucleus and

1
r0j

=
1

|R− rj |
· (11)

Under the assumption that radiation is nearly resonant
and intensity being not too high we express the solution of
the Schrödinger equation in terms of the dressed states as:

φn(r, t) = e−ι(E40s+λn)t
8∑

m=1

anmum(r)e−ι(m−1)ωt (12)

where the summation extends over all the bare states.In
the present calculation we have considered the following
eight states i.e. 40s −→ 40p −→ 41s −→ 41p −→ 42s −→
42p −→ 43s −→ 43p. Here um(r) are the unperturbed
atomic states, E40s is the energy of the 40s level, a′ms are
the amplitudes corresponding to the bare atomic states
and λn are the quasi-energies. The summation can be gen-
eralized to any number of bare states (for multiplets).

For the present problem we cannot treat the bare wave-
functions as hydrogenic because of very large principal
quantum numbers associated with the Rydberg atom. The
Rydberg atom wavefunction is given in terms of radial and
angular elements as

uj(r) = Rnl(r)Ylm(θ′, φ′) (13)

where r, θ′ and φ′ define position of the Rydberg electron.
The accurate computation of the wavefunction requires a
careful choice of the radial part, therefore it is of vital
importance to determine the correct value of the radial
element. The use of coulomb approximation is hindered
by the fact that the customary method of evaluation of
radial integrals – that of Bates and Damgaard [24] breaks
down due to the cancellation of large terms in the series
when ν or ν′ are large where ν, ν′ define the effective
principal quantum number for the initial and final states
respectively. The method of Edmonds and Kelly [28] can
deal with higher ν, ν′, but since it evaluates the integrals
by numerical quadrature it becomes inefficient and even-
tually fails for large values. The present problem therefore
requires a very special treatment so we are using an em-
pirical approximation of Naccache [25] and Richards [26].
Naccahe and Richards have applied the Heisenberg’s cor-
respondence principle to give the approximation to evalu-
ate the square of the radial matrix elements between states
nl→ n′l′ where n, n′ are the principal quantum numbers
and l, l′ are the orbital quantum numbers for the initial
and the final states respectively. It is given by:

|〈nl|r|n′l′〉|2 '
(
n2

c

2s

)2

[(1 +∆l lc/nc)Js+1(sε)

−(1−∆l lc/nc)Js−1(sε)] (14)

where ∆l = l′−l, s = n−n′, lc = max(l, l′), nc = 2/[1/n+
1/n′] and ε is the eccentricity of the classical Kepler orbit.
For purpose of extrapolation Picart et al. [23] considered
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the ratio

φ(nl, n′l′) = 〈nl|r|n′l′〉
/(3

2
n2

c(1− (lc/nc)2)1/2

)
(15)

where the denominator is a good approximation to the
non-hydrogenic matrix element 〈ncl|r|ncl

′〉 Considering
the maclaurin series for φ in terms of γ = ∆l lc/nc

φ(nl, n′l′) =
∞∑
p=0

γpfp(s). (16)

The coefficients of γp are functions of s and are given by
Oertel and Shomo [27]. The series of φ truncated up to γ3,
gives a good approximation to φ. This leads to a similar
expression for the non-hydrogenic case given by:

φ(νl, ν′l′) = 〈νl|r|ν′l′〉
/(3

2
ν2

c (1− (lc/νc)2)1/2

)
(17)

where lc = max(l, l′) and νc = 2/[1/ν+1/ν′]. ν and ν′ are
the effective principal quantum number for the initial and
the final states respectively. The difference ν − ν′ = s is
not necessarily an integer and the series for nonhydrogenic
case can be written as

φ(νl, ν′l′) =
∞∑
p=0

γpgp(s). (18)

The coefficients gp(s) are defined for all real s and share
the symmetric properties of fp(s) above. The tabulation
of the functions g0(s), g1(s), g2(s), g3(s) for |s| < 4.0 has
been done by Edmonds et al. [28]. We have restricted our
study here to a small range of n i.e. 40 ≤ n ≤ 43 because
of the limitations on the value of s [28]. Considering the
series summation up to γ3 we arrive at:

〈νl|r|ν′l′〉 =

(
3
2
ν2

c (1− (lc/νc)2)1/2

)
3∑
p=0

γpgp(s) (19)

where lc, νc,∆l, ν, ν′, s are same as defined earlier and γ =
∆l (lc/νc).

We have calculated the radial matrix elements rigor-
ously for all the sixteen levels considered including both
dipole allowed and dipole forbidden transitions. These
radial integrals have been used to determine the bare
state wavefunctions for the Rydberg states which are then
used to formulate the dressed state wavefunctions for
the field coupled states. The set of coupled differential
equations given by equation (9) have been solved by the
non-perturbative quasi-energy technique using the dressed
state formalism. In matrix form we can write the coupled
differential equations as:

ι ˙C(t) = Q(t)C(t) (20)

where C(t) is a column matrix and Q(t) is a coupling
matrix.

The above equations can be solved numerically for the
time-dependent coefficients cj(t) for a particular set of ini-
tial conditions. Using the standard diagonalization tech-
nique as used by others [29,30]. The coupled equation (20)
can be solved at t = +∞, we define

C(+∞) = U exp(−MD)U+C(−∞) (21)

where U is a unitary operator and MD is a diagonalized
matrix obtained by the unitary transformation

MD = U+MU (22)

where

M =
∫ +∞

−∞
Q(t′)dt′. (23)

Using equation (21) we arrive at the transition probability
for the transition for the state i −→ f given by

Pi−→f = |Cf (+∞)|2. (24)

This probability can be integrated with respect to the im-
pact parameter to find out the total cross-section for the
transition from the initial state i to final state f as

σi−→f = 2π
∫ ∞

0

Pi−→f (b)bdb. (25)

In the next section we discuss the results thus obtained.

3 Discussion

A full quantum mechanical treatment of collisions aided
excitations in Rydberg atoms in the presence of e.m field
at any velocities is a highly impractical numerical inte-
gration problem so we have used impact parameter ap-
proximation to simplify the problem. A quantity which
is very sensitive to the quality of calculated Rydberg or-
bitals is the so called quantum defect µl which depends
on the orbital angular momentum l of the Rydberg elec-
tron. This quantum defect accounts for effective potential
arising from the (Z − 1) core electrons and a nucleus of
charge Z by shifting the energy eigen-values away from
the hydrogenic values. Since the scattering of charged par-
ticles with atoms is induced predominantly by the long
range dipole interaction, then, within the velocity range
considered here, the ion can be considered to move along
classical trajectories. It has been assumed that the proton
acts as a mere spectator at far away distances and this
point is quite apparent from the graph of probability vs.
impact parameter, where the graphs depict reduction in
probability at large impact parameters (see Figs. 2 and 3).

The present study has been limited to a small range
of n because of the limitation on the values of s, since the
radial integrals considered and the truncated series rep-
resentation of φ is valid only for |γ| < 0.2 and |s| < 4.0.
Since the Rydberg atom has a very large radius and the
electron probability distribution is peaked at very large
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Fig. 1. (a) Probability for transition from 40s to 41p state in the absence of collision as a function of field frequency, at an
intensity I = 10 mW/cm2. (b) Probability for transition from 40s to 41p state in the presence of collision as a function of field
frequency, at an intensity I = 100 mW/cm2. (c) Probability for transition from 40s to 41p state in the presence of collision as
a function of field frequency, at an intensity I = 10 mW/cm2.

distances from the parent ion thereby leading to very low
kinetic energies of the Rydberg electron, therefore the ve-
locities of the incident projectiles have been taken larger
than the velocity of the Rydberg electron. Charge trans-
fer mechanism is not included in the theoretical model
considered here because of large collision velocities.

For finding out the collisional probabilities, first of all,
the dressed states have been calculated. Once the dressed
states are known, one can solve the coupled differential
equations by the diagonalization technique, for the tran-
sition amplitudes cj(t) with the initial condition ci = 1,
cj(j 6= i) = 0. Usually the initial condition is ci = δoi
which implies the atom being in the ground state at t = 0,
but here it implies the atom to be in the 40s state, which
may happen due to some other process such as excita-
tion by pulsed laser or collisional excitation. Substitut-
ing C(+∞) in equation (24) one gets the transition prob-
abilities. Finally the cross-sections σi−→j are evaluated by
integrating the transition probability Pi−→j with respect
to the impact parameter. The results are also shown in
the light of without field calculations.

In Figure 1 we present the variation of transition
probabilities with the field frequency. Figure 1a shows
the variation of probability for 40s–41p transition with
frequency, at an intensity I = 10 mW/cm2 in the ab-
sence of collision. The transition probability rises sharply
at ω = 5.36× 1010 s−1 (0.0814 eV), corresponding to the
three photon resonance. The same transition has been
studied for collisional impact with the proton and the
maxima is observed at ω = 5.18× 1010 s−1 with intensity
I = 100 mW/cm2 (see Fig. 1b) and at ω = 5.28×1010 s−1

with intensity I = 10 mW/cm2 (see Fig. 1c) showing how
the transition probability is modified by the collision pro-
cess. The maxima observed for collisional impact fall in a
range of frequencies near the resonance frequency.

The variation of probability without collision as a func-
tion of field frequency is also shown for 40s–40p transi-
tion with maxima satisfying one photon resonance (ω =
5.506× 1010 s−1) (Fig. 4).

Figures 2 and 3 is a plot between probability
and impact parameter b, at incident particle velocity
v = 0.04 a.u., and field frequency ω = 5.506 × 1010 s−1.
Figure 2 is drawn for the 40s–40p transition at a field in-
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Fig. 3. (a) The probability for transition from 40s to 40d state
as a function of impact parameter (loge(b)) at collision velocity
v = 0.04 a.u., frequency ω = 5.506 × 1010 s−1 and intensity
I = 1 W/cm2. (b) The probability for transition from 40s
to 40p state as a function of impact parameter (loge(b)) at
collision velocity v = 0.04 a.u., frequency ω = 5.506× 1010 s−1

and intensity I = 10 mW/cm2.

tensity I = 1 W/cm2. A comparison has been made for
the without field case and the effect of field modifying
the collision is shown. The same transition is also stud-
ied at a field intensity I = 10 mW/cm2 (see Fig. 3b)
and it is observed that for low intensities (Fig. 3b)
the probability is larger (PL = 9.33 × 10−1) than at
higher intensity (PL = 7.9 × 10−1) (Fig. 2) as expected.
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Fig. 4. The probability (without collision) for transition
from 40s to 40p state as a function of field frequency ω, at
an intensity I = 10 mW/cm2.
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Fig. 5. Cross-section for transition from 40s to 40p state
as a function of field frequency ω, with collision velocity
v = 0.04 a.u. at an intensity I1 = 1 mW/cm2 (bold line) and
I2 = 10 mW/cm2 (dotted line).

In general the transition probabilities oscillates at small
values of b and decreases to zero at large b. This type of
variation in transition probability is a general feature of
the collision problem and can be explained on the basis
of multichannel coupling effect. At large impact parame-
ters, the interaction is weak and the transition probabil-
ity is small. Also it is seen that the maximum transition
probability PL(40s–40p) (7.9× 10−1) has a much greater
magnitude than PL(40s–40d) (2.52× 10−1) (see Fig. 3a)
at the same intensity, since the earlier satisfies one photon
resonance at ω = 5.506× 1010 s−1.

The cross-section for the collisional excitation of Na
Rydberg atom has been measured as a function of inci-
dent particle velocity and field frequency. Figures 5 to 8
show a variation of cross-section with field frequency for
the collision velocity v = 0.04 a.u. Figure 5 describes the
variation in cross-section for the transition 40s → 40p
at an intensity I = 1 mW/cm2. It shows a sharp rise
in cross-section at ω = 5.00 × 1010 s−1 and a small rise
at ω = 5.506× 1010 s−1 explaining how the collision pro-
cess modifies the transition with peaks shifted from res-
onance to near resonance. The same transition has been
studied at a higher intensity I = 10 mW/cm2. It is ob-
served that the cross-section is maximum at near reso-
nance frequency for both cases but there is a shake up
process at high intensities that leads the probability to
flow to other channels.

Figure 6 shows the variation of cross-section with field
frequency for 40s → 41p at an intensity I = 1 mW/cm2.
The peak is observed at ω = 5.2× 1010 s−1, which is near
to three photon resonance (ω = 5.356×1010 s−1). Figure 7
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Fig. 7. Cross-section for transition from 40s to 43s state as a
function of field frequency ω. at an intensity I = 100 mW/cm2

and collision velocity v = 0.04 a.u.

shows the same variation for the transition 40s→ 43s at
an intensity I = 100 mW/cm2 with peak near to the six
photon resonance frequency (ω = 5.096× 1010 s−1).

We have studied these variations for the dipole for-
bidden transition also. Figures 8a and 8b show the
variations in cross-sections for the 40s → 40d transi-
tions with field frequency at intensities I = 1 mW/cm2

and I = 10 mW/cm2 respectively. This particular tran-
sition is although not field coupled but the field fre-
quency and intensity modifies the cross-section to a sig-
nificant level. At higher intensities it is modified as earlier
(40s→ 40p).

Figure 9 shows how cross-section varies with collision
velocity for three different transitions at an intensity I =
1 mW/cm2. Figure 9a shows the variation for 40s→ 40p
at one photon resonance frequency (ω = 5.50× 1010 s−1).
It is seen that cross-section decreases both at low as well
as at high velocities. The same variation is seen in Fig-
ure 9b for the transition 40s→ 40d drawn for eight pho-
ton resonance and Figure 9c for the transition 40s→ 40f
drawn for nine photon resonance (both dipole forbidden).
On comparison it is apparent that for velocities near the
target electron the p-states become decoupled from the
manifold leading to greater rise in cross-section for
the dipole forbidden transitions. These results are in good
accord with the results earlier obtained [31–34].
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Fig. 8. (a) Cross-section for transition from 40s to 40d state as a function of field frequency ω, at an intensity I = 1 mW/cm2

and collision velocity v = 0.04 a.u. (b) Cross-section for transition from 40s to 40d state as a function of field frequency ω, at
an intensity I = 10 mW cm−2 and collision velocity v = 0.04 a.u.
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Fig. 9. (a, left) Cross-section for transition from 40s to 40p state as a function of collision velocity at an intensity I = 1 mW/cm2

and frequency ω = 5.506 × 1010 s−1 (one photon resonance). (b, center) Cross-section for transition from 40s to 40d state as
a function of collision velocity at an intensity I = 1 mW/cm2 and frequency ω = 1.80 × 1010 s−1 (eight photon resonance).
(c, right) Cross-section for transition from 40s to 40f state as a function collision velocity at an intensity I = 1 mW/cm2 and
frequency ω = 1.62× 1010 s−1 (nine photon resonance).

4 Summary and conclusion

The observed collision process is a very good example of
ion-atom collision. As such it is of interest from a funda-
mental point of view because it is theoretically tractable
and experimentally accessible. We have described a com-
bination of the non-perturbative quasi-energy approach
for the radiation-atom interaction and the close-coupling
impact parameter method for the collision-aided radia-
tive excitation of a dressed atom. The ion-Rydberg atom
collision has been treated using the quantum defect the-
ory. The use of quasi-energy non-perturbative approach
has the potential of revealing the entire information about
the collisional process. The collisional field excitation has
been studied preferably because collisional field excitation
is interesting from a basic physics perspective, as it adds
complexity to the one electron field excitation process.
The results obtained are consistent with the earlier mod-
els. The variations of cross-sections with collision velocity
and field frequency describes the process very effectively.

KB acknowledges the help from Council of Scientific and Indus-
trial Relations (CSIR) for financial support. MM is thankful
to UGC and DST for financial support.

References
1. K.A. Safinya, J.F. Delpech, F. Gounand, W. Sandner, T.F.

Gallgher, Phys. Rev. Lett. 47, 405 (1981)
2. T.F. Gallgher, K.A. Safinya, F. Gounand, J.F. Delpech,

W. Sandner, R.D. Kachru, Phys. Rev. A 25, 1905 (1982)
3. D.S. Thompson, R.C. Stoneman, T.F. Gallgher, Phys.

Rev. A 39, 2914 (1989)
4. T.F. Gallgher, Phys. Rep. 210, 319 (1992)
5. I.L. Beigman, M.I. Syrkin, Sov. Phys. JETP 62, 226 (1985)
6. A.A. Konovalenko, L.G. Sodin, Nature 283, 360 (1978);

294, 135 (1981)
7. D.H. Blake, R.H. Crutcher, W.D. Watson, Nature 287,

707 (1980)
8. M.H. Mittleman, Introduction to the Theory of electron-

Atom Collisions (Plenum, New York, 1982)
9. Photon Assisted Collisions and Related Topics, edited by

N.K. Rahman, C. Guidotti (Academic, New York, 1992)
10. M. Mohan, V. Prasad, J. Phys. B 24, L81 (1991)
11. L.I. Gudzenko, L.V. Gurvich, V.S. Dubov, S.I. Yakovenko,

Sov. Phys. JETP 46, 1082 (1977)
12. T.F. George, J. Phys. Chem. 86, 10 (1986)
13. M.J. Seaton, Proc. Phys. Lond. 79, 1105 (1962)
14. L.A. Bloomefield, R.C. Stoneman, T.F. Gallgher, Phys.

Rev. Lett. 57, 2512 (1986)
15. R.C. Stoneman, D.S. Thompson, T.F. Gallgher, Phys.

Rev. A 37, 1527 (1988)



198 The European Physical Journal D

16. K. Mac Adam, R. Rolfes, D. Crossby, Phys. Rev. A 24,
1286 (1981)

17. C. Kubach, V. Sidis, Phys. Rev. A 23, 110 (1981)
18. R.J. Bell, B.G. Skinner, Proc. Phys. Soc. Lond. 80, 404

(1962)
19. C.E. Theodosiou, Phys. Rev. A 36, 2067 (1987)
20. M.J. Cavagnero, Phys. Rev. A 52, 2865 (1995)
21. V.D. Irby, R.G. Rolfes, O.P. Makarov, K.B. Mac Adam,

M.I. Syrkin, Phys. Rev. A 52, 3809 (1995)
22. Ya.M. Agre, L.P. Rapport, Sov. Phys. JETP 55, 215

(1982)
23. J. Picart, A.R. Edmonds, N. Tran Minh, J. Phys. B 11,

L651 (1978)
24. D.R. Bates, A. Damgaard, Phil. Trans. R. Soc. 242, 101

(1949)

25. P.F. Naccache, J. Phys. B: At. Mol. Phys. 5, 1308 (1972)
26. I. Percival, D. Richards, Adv. At. Mol. Phys. 11, 1 (1975)
27. G.K. Oertel, L.P. Shomo, Astrophys. J. Suppl. 16, 175

(1968)
28. A.R. Edmonds, J. Picart, N. Tran Minh, R. Pullen, J.

Phys. B 12, 2781 (1979)
29. B. Sharma, M. Mohan, J. Phys. B 19, L433 (1986)
30. J. Callaway, E. Baur, Phys. Rev. A 140, 1072 (1965)
31. M.I. Syrkin, Phys. Rev. A 53, 825 (1996)
32. R.G. Rolfes, L.G. Gray, O.P. Makarov, K.B. Mac Adam,

J. Phys. B 26, 2191 (1993)
33. R.G. Rolfes, L.G. Gray, K.B. Mac Adam, J. Phys. B 25,

2319 (1992)
34. R.G. Rolfes, V.D. Irby, O.P. Makarov, R.C. Dickinson,

K.B. Mac Adam, J. Phys. B 27, 1167 (1994)


